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In this paper we examine the low-frequency sound radiated when various types of 
unsteady flow interact with a jet pipe. In each case we solve the problem exactly by 
the Wiener-Hopf technique, producing results valid for arbitrary internal and ex- 
ternal Mach numbers and temperatures, discuss the importance of a Kutta condition 
at the duct exit, and provide an interpretation, in elementary terms, of the radiated 
sound field using the Lighthill acoustic analogy. A central feature is that the solutions 
are always obtained subject to a causality requirement, regardless of whether or not 
a Kutta condition is imposed a t  the pipe lip. 

When low-frequency sound propagates down the jet pipe, little of it reaches the 
far field, and the major disturbance outside the pipe is that associated with the jet 
instability waves. At subsonic jet speeds and low-enough Strouhal number these waves 
transport kinetic energy at a rate precisely balancing the loss of acoustic energy from 
the pipe, resulting in a net attenuation of the sound power. For supersonic jet condi- 
tions a further wave motion, the unsteady-flow counterpart of the steady wave struc- 
ture of an imperfectly expanded jet, is present in addition to the instability wave. 
We use the Lighthill acoustic analogy to show that, for high-enough jet Mach number 
and temperature, the sound radiation is caused largely by quadrupole sources arising 
from the jet instability waves. An alternative interpretation uses the acoustic 
analogy incorporating a mean flow due to Dowling, Ffowcs Williams and Goldstein, 
and expresses the far-field sound as the sum of contributions from monopoles and 
dipoles distributed over the duct exit. The directivity and power of the calculated 
far-field sound are in good agreement with experiments. 

We also calculate the sound scattered by the jet pipe when there is an incident 
external sound field, and show a previously published result to be in error. In general, 
the flbw phenomena produced by internal and external incident sound fields are 
similar. Finally, we discuss the effects of nozzle contraction. We find that the radiated 
sound field is little changed in character, but that the reflection properties of the 
nozzle may be drastically altered. 
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1. Introduction 
In  this paper we examine the interaction between a number of types of unsteady 

flow and a jet pipe. The motivation behind this study was the so-called ‘excess- 
noise’ problem on jet engines. It has been found that, when the noise of an engine is 
measured statically, it is somewhat greater than would have been predicted on the 
basis of tests on model jets. This discrepancy is even greater in flight and has been the 
subject of a great deal of research (Bryce 1979). In  this paper we model some of the 
possible mechanisms of excess noise: the transmission of internally generated noise 
out of the jet pipe to the far field, the scattering of external sound fields by the jet 
pipe, and the convection of turbulence past the end of the jet pipe. We consider only 
the low-frequency limit, but unlike many other authors we allow the mean flows 
both outside and inside the pipe to have arbitrary Mach numbers and temperatures. 
This is important, since for the conditions of interest (typically jet Mach number 0.8, 
internal-to-external temperature ratio 2.5) the effects of flow may be considerable. 
For example, Goldstein (1975) shows that placing a low-frequency acoustic source 
inside a jet flow has a dramatic effect on the field shape of the radiated sound. 

The problem we solve fist is the propagation of acoustic waves out of the jet pipe 
to the far field; in this as in the other problems we idealize the propulsion nozzle m 
a semi-infinite rigid cylindrical pipe. The mean flow outside the pipe consists of a 
uniform semi-infinite jet bounded by a vortex sheet. We confine t,he discussion to low 
frequencies, where the incident sound field in the pipe is in the form of plane waves. 
This problem in the absence of a mean flow was first solved by Levine & Schwinger 
(1948) using the Wiener-Hopf method. Their solution was extended to include the 
Same uniform mean flow both inside and outside the pipe by Carrier (1956). The first 
attempts to include the effects of different mean flows inside and outside the pipe were 
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made by Mani (1973) and Savkar (1976), for plane and circular pipe geometry respec- 
tively, who used an approximate method. The exact solution to the circular-pipe 
problem wm found by Munt (1977) who, again using the Wiener-Hopf technique, 
allowed for arbitrary internal and external Mach numbers and temperatures and 
obtained field shapes for the radiated sound in excellent agreement with experiments. 
Munt (1982a, b) later extended his work to calculate both the amplitude of the sound 
reflected back up the pipe (1982a) and to examine the variation in the total power 
radiated with jet conditions (1982b). The power radiation has been studied experi- 
mentally by Bechert, Michel & Pfizenmaier (1977), who observed that the power 
radiated to the far field could be substantially less than the net power flow along the 
pipe, so that there was a net loss of acoustic energy. Munt’s (1982b) paper is consistent 
with these results, as is the work of Howe (1979), who has studied the sound-trans- 
mission problem in the low-Mach-number, low-frequency approximation. Bechert 
(1979) also explains this net power loss using a simple theory similar to that of the 
present work, only at very low Mach numbers. 

In this paper, we use the low-frequency asymptote of Munt’s theory to obtain 
simple expressions for the sound radiated to the far field, that reflected back up the 
jet pipe, and for the unsteady motion of the jet column. The latter consists mainly 
of a spatially growing instability wave. This is an important feature of all problem 
involving the interaction of unsteady flows and jet pipes. In the limit of vanishingly 
low frequency this instability wave grows only very slowly and is convected with the 
mean flow. In addition to the usual low-frequency limit we also discuss the case where 
the jet is very hot compared with its surroundings, so that, as it were, it is hotter than 
it is acoustically compact. Here there is a dramatic change in the nature of the radiated 
sound field, similar to that found by Dowling, Ffowcs Williams & Goldstein (1978) 
in their study of jet noise. In Munt’s paper it is assumed that the sound radiated is 
causally related to the incident sound field and that a Kutta condition is obeyed at 
the duct exit. We discuss the effect of relaxing the Kutta condition while still insisting 
on causality, and establish that the jet instability wave can then be made to vanish. 
In that case, there is no loss of acoustic energy, and all the power in the incident wave 
is reflected back up the duct, apart from an O(kZa8) fraction which is lost to the far 
field. We further use an idea of Howe (1979) to provide an alternative modelling of the 
instability waves. 

Munt’s solution only allows for subsonic jet speeds. We extend his theory to cover 
supersonic jet conditions, using concepts due to Morgan (1974), and show that an 
additional physical phenomenon is present at  these speeds; the unsteady counterpart 
of the periodic steady wave structure of an imperfectly expanded supersonic jet. 

Using methods similar to those of Munt, we determine the sound scattered when an 
external sound field is incident on the pipe. In the absence of a mean flow the solution 
is known (see e.g. Noble 1968) and may be deduced from that for incident internal 
sound by reciprocity arguments. There is no existing exact solution when a mean 
flow is present, the only published work being the approximate solution of Jacques 
(1975). We show that his solution is in error, although the scaling laws he deduces are 
substantially correct when the incident sound waves are due to some nearby aero- 
dynamic disturbance. 

We also discuss, in less detail, the generation of sound when turbulence is convected 
by the mean flow past the end of the jet pipe; a full description of the theory may be 

3-2 
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found in Cargill (1981). The published work on this low-frequency problem is limited 
to two cases. Leppington (1971) models the turbulence aa non-convected quadrupoles, 
whosenear field is scattered as sound by the end of the pipe, resultingin far-field sound 
levels which scale as the sixth power of the jet velocity. Crighton (1972) models the 
problem as the scattering of the energy of a jet instability wave by the pipe exit and 
finds the same overall scaling laws as Leppington. Related to these problems is work 
by Howe (1976) on the sound generated when vortices are convected past the trailing 
edge of a flat plate. He finds that the sound radiated depends critically on the impo- 
sition of a Kutta condition at the edge of the plate. When a Kutta condition is en- 
forced and the vortices are convected with the mean flow, then no sound is radiated. 
In  our study of the semi-inhite cylindrical pipe we find that a similar result 
holds. 

A useful way of examining sound-radiation problems is by the use of acoustic 
analogies. These ascribe the sound radiation to monopole and dipole sour088 on 
bounding surfaces, and to quadrupole sources distributed throughout the flow field. 
We use two different acoustic analogies; that of Lighthill (1952) as reformulated by 
Ffowcs Williams & Hawkings (1969), which does not explicitly include the fluid- 
shielding effects of any mean flow, and that of Dowling et al. (1978), which does. 
In  each case the source terms are determined using the lowest-order asymptotic-low 
frequency solutions for the flows in the jet and the pipe. We show that the sound 
fields determined in this way are precisely the same as those obtained exactly by the 
Wiener-Hopf method. 

Thus far we have idealized the end of the jet pipe by a cylindrical pipe. On real 
engines the end of the jet pipe contracts to form a nozzle. We discuss the transmission 
of sound through such a nozzle, and the sound generated when entropy waves are 
convected through the contraction. We use the methods of Marble & Candel (1977) 
and Cumpsty & Marble (1977), who were concerned with variable-area ducts and the 
transmission of acoustic waves across turbines, respectively. Our results for the trans- 
mission problem are in good agreement with the recent experimental results of Bechert 
(1979) and our expressions for the sound generated by entropy waves are essentially 
the same as those obtained by Ffowcs Williams & Howe (1975) using another method. 

Finally, we discuss the practical significance of our results and compare them with 
the limited experimental evidence. 

2. Radiation of internal noise from a jet pipe with flow 
In this section we consider the radiation of low-frequency internal noise from a 

cylindrical pipe with both internal and external flows. We first solve the problem 
for a subsonic jet in the low-frequency limit, subject to the condition that it satisfies 
a trailing-edge Kutta condition. Then, we discuss the implications of relaxing the 
Kutta condition, and finally modify the analysis to allow for supersonic jet conditions. 

2.1. Subsonic jet with Kutta condition 

The mathematics in this section largely follows the work of Munt (1977). For con- 
venience, and to aid comparison with his papers, we use his notation. While this 
problem has been solved in some detail by Munt we repeat the steps in the mathematics 
since the analysis forms the basis for both the rest of this section and for 5 3. The major 
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difference between our analysis and Munt's is that we choose to work with pressure 
rather than velocity potential as the fundamental variable. 

We consider a cylindrical semi-infinite rigid tube of radius a, from which issues a 
jet of density pi, speed of sound cj and velocity Uj = Mcj, occupying the region x > 0 ,  
r < a. The jet and pipe are assumed to be immersed in an infinite region of velocity 
Uo = aMci,  density po = yp, and speed of sound co = ci/C. We assume that a covers 
the range 0 < a < 1. 

The non-dimensional quantities y ,  C, a express the ratios of the mainstream-to-jet 
value of density, reciprocal of sound speed, and velocity. When the jet and mainstream 
are perfect gases with the same specific heats, we find that y = 0. 

The waves in the pipe are assumed to have the time dependence eiot, and this factor 
is suppressed throughout the analysis. The equations satisfied by the pressure fluc- 
tuations in cylindrical co-ordinates are 

where k = w / q .  From the assumption that the cylinder is rigid, one derives the 
boundary condition that the normal gradient of pressure vanishes on it: 

( x  < 0) .  

The boundary conditions on the jet vortex layer are the continuity of pressure, so that 

p(a- ,  9,x) = P@+, $ 9  4 (x 2 01, (2.4) 

and the kinematic condition of equal particle displacement on both sides of the vortex 
layer. Let r](x, 9) denote the displacement of the vortex layer from its mean position, 
r = a. Then this latter condition implies that r ]  satisfies 

Two other conditions are important in determining the sound field: causality and the 
Kutta condition. Causality is defined to be the requirement that the sound field shall 
vanish for impulsive excitation before the source is switched on. As Jones & Morgan 
(1974) have shown, if a time-harmonic solution is used, this must then obey certain 
constraints on its behaviour in the lower half-plane for complex k. The Kutta condition 
concerns the requirement to be satisfied by the displacement of the vortex layer at 
the edge of the cylinder. The usual Kutta condition is that the layer should leave the 
end of the pipe with zero gradient. The solution found by Munt satisfies both causality 
and this Kutta condition. We shall later discuss solutions that are causal but do not 
satisfy a Kutta condition. 



64 A .  M .  Cargill 

Accordingly we now require for our solution that 

$(O+, 9) = 0. 
ax 

We split the total field into two parts: an incident field which is assumed to be known 
and the additional term arising from its interaction with the pipe. We assume that 
the incident field has the form of an acoustic duct mode with 

= 0 (r > a), I 
which satisfies (2.1) and (2.3), and where 

[k2 - (1  - M2)jzn/a2]’ - kM 
I - M a  Pmn = 9 

with Y p  < 0. Here jAn is the nth zero of dJ,(y)/dy, and J,(y) is the Bessel function 
of order m. Since the primary wave has the dependence ei@, we further assume that 
the diffracted field has the same dependence. 

To assist the analysis we assume that k has a negative imaginary part, so that any 
waves produced will decay as x -+ & 00. In particular we define k = k, + ik, = I k J  e-i8, 

where 0 < 8 < n. At the end of the analysis we shall put 8 = 0 to obtain thesolution 
for real w.  

We define the half-range Fourier transforms of any quantity $, say, by the formulae 

(2.8) 
+m 

-m 
Y*(u) = 1 $(x) exp ( + ikux) H (  4 x) dx, 

where H ( x )  is the unit step function with 

H ( x )  = 1 (Z > 0), 

H ( x )  = 0 ( x  < 0) .  

The inverse of these transforms is given correspondingly by 

+m 
$(x)  =‘s Y ( u )  kexp( -ikux)du, 

2n - @  

where Y ( u )  = Y+(u) +Y-(u). 

After Fourier transformation the equations of motion (2.1) and (2.2) become 

P ( k , r )  = 0 (r  < a ) ,  

P(k , r )  = 0 ( r  > a) ,  

in which we have defined 
v2(u) = ( 1  - Mu)2- u 2 ,  

w2(u) = (1 - Mau)2 - u2. 

(2.10) 

(2.11) 

(2.12a) 

(2.12b) 
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FIQURE 1. Positions of branch cuts and regions of regularity Rf, R-, 
in the complex u-plane for subsonic flow. 

The branches of w, u are taken to be those where 9 ( v ,  w) < 0 as u --f + ao. The depend- 
ence on u of the transform P(k, r,  u) will sometimes be omitted, as in (2.10) and (2.11), 
while elsewhere it will be the dependence on (u, r )  which is explicitly displayed. The 
branch cuts are taken to be from 

and for v(u), 

-C  
to +a and - to-oo forw(u). 

C andfrom u =  
1 +aMC 1 - aMC 

It therefore follows that the & Fourier transforms have the regions of regularity R* 
shown in figure 1. In  that diagram we have shown the branch cuts drawn with 

1 C 
and - 1 

1 - M > 1 -aMC' >- C 
1+aMC 1+M 

If this condition is not satisfied the order of the branch points on the real u-axis 
should be reversed, 

Both half-range transforms can be seen to be analytic in the region of overlap 
between R*, and the integration path in (2.9) is taken to lie in this strip, and specific- 
ally along the line argu = 8. 

The solutions to (2.10) and (2.11) are Bessel functions of order m. We require that 
the solution be finite at  r = 0 and decay as r + CQ for u in the strip. Hence 

= B(u)Hg)(kwr) ( r  > a). 

P(u,r) = A(u)J,(kvr) 
(2.13) 
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Defining, further, the half-range transforms of the boundary displacement as Z*, 
the boundary conditions (2.3) and (2.4) become 

Pj’(u, a-) +Pi+@, a-) = Po+@, a+), (2.14) 

z-(u) = 0, (2.15) 

in which 4, Po are the transforms of the pressure in r < a, r > a respectively and pi is 
the transform of the incident pressure, 

for u in R+. 

(2.16) 

We solve (2.14) and (2.15) by noting that 

q(u,  a-) - Po(u, a+) + Pt(u, a-) = Pc(u, a-) - P;(u, a-) 
= F-, (2.17) 

a function regular in R-. 
Using (2.5), we find that 

(2.18) Z(u) pj cf kZDf J,(kva) 
P,(u,a-) = kv&(kva) ’ 

Z(u) pi cf k2yDi H$(kwa) 
kwHg)( kwa) P,(u,a+) = 2 

(2.19) 

where DT = (1  -Mu)2 ,  Dt = (1 - c c M ~ ) ~ .  Whence, substituting (2.18), (2.19) and 
(2.16) in (2.14), and noting that, from (2.15), Z-(u) = 0, we find that 

where 

(2.20) 

(2.21) 

We solve (2.20) by the Wiener-Hopf technique, described for example in Noble 
(1958). 

We factorize K(u)  as K(u)  = K+(u) K-(u), where K*(u) are analytic and non-zero 
in the two half-planes R+ and R-. Then (2.20) gives 

(2.22) 

This may be rewritten as 

The left- and right-hand sides of this equation are analytic in the respective half- 
planes R*. By an extension of Liouville’s theorem they must therefore both equal 
some function c(u), which is regular over the whole u-plane, except at infinity. The 
only form of C(u) that has the required properties is a polynomial in u. 
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FIGURE 2. The complex k-plane showing the region A. 

We consider now the edge conditions on q, and the resulting constraints on the 
behaviour of Z(u). From Munt (1977), we find that if k~ A, where A is a region of the 
k-plane determined by the instability zeros u,, ug of K(u) ,  then K+(u) = O(u!), 
K-(u) = O(u-4) as 1.1 --f 00 but, i f k $ A ,  then 

K+(u) = O(U*), K-(u) = O ( d )  as 1.1 + 00. 

The region A is shown in figure 2. 
Then if ~ E A ,  we find that if q ( x )  is O(xn) then Z(u) is O(u-@+l)), and the left-hand 

side of (2.23) is O(Z- (~-~) .  This means that C(u) is a polynomial of order 4 - n. For 
instance if n = Q and the solution obeys the Kutta condition, we are restricted to 
C(u) = 0. If the solution is the least singular one not obeying a Kutta condition, then 
C(u) must be a constant. The procedure for obtaining a causal solution in either case 
is to solve equation (2.23) for some k E A ,  for example with 8 = in, and then argue 
the result for real k by analytic continuation. 

Hence we find that 

+*I ( i e -ku)  K+(u)K-&/k) K+(u) 
- 1  

Z+(u) = 

aa 2-(u) = 0; this is also the value of Z(u). Then by (2.9) 

(2.24) 

(2.26) 

As 8 passes from 8 = 4 7 ~  to 8 = 0, the pole at u = u, is passed over by the integration 
path for u. For a causal solution we require, from a theorem of Jones t Morgan ( 1974), 
that q(x, k) is analytic in the lower half-plane, and that 

exp [(ib +d)  k]q(x, k) = O( ! k i p )  as lkl+ 03, 
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where b,  d are real numbers, and b > 0. Therefore there must be no discontinuity in 
7 as the contour passes over uo. Therefore, we must add on a residue contribution 
from the pole for 8 < arg uo, and thus for a causal solution we have 

1 + m e x p i l  

277 - w e x p i l  
~ ( x ,  k )  = -j Z+(u) e-ikw k d u  

+ H(arg uo - 8)  lim [iZ+(u,) (u - uo) k] e-ik%x. (2.26) 

With reference to Morgan (1974) it  can be seen that the solution is causal whether 
C(u) = 0 (Kutta condition) or b(u) is a constant (no Kutta condition). 

Then the causal solution subject to a Kutta condition is given by 

U-0 

‘I 

K+(u) K - @ / k )  @ - ku)’ Z(U) = 

ipjci k2Df J,,,(kw) 
p,(u) = kvJL(kvu) K+(u) K-(,u/k) (p- ku)’ 

ipj cf k2yDi Hg)(kwr) 
= kwHg)’(kwu) K+(u) K - @ / k )  (11 - ku)’ 

(2.27) 

(2.28) 

(2.29) 

The general properties of the split functions have been given by Munt. We list them 
in the low-frequency limit in appendix A. 

We consider first, and in most detail, solutions for an incident plane acoustic wave. 
In  this limit the split functions are 

(2.30) 

The pressure perturbation, for r < a, is given by 

In the limit of very low frequency 
- 2 ~ ( l -  MU)2pj~l )k2  
(ka)2 (1  - (1 + M )  U )  ’ K+(u) = 

1u=- 1 
k 1 + M ’  

and therefore 

(2.32) 

(2.33) 

The value of this integral is equal to one or other of the pole residue contributions 
according as x is greater than or less than zero. The pole at  u = 1/( 1 + M )  cancels out 
the incident field for x > 0, while the pole at u = - 1/( 1 - M )  gives the reflected field 
inside the jet pipe. This has a value pl = -exp [ i k x / ( l  - M ) ] ,  and therefore the re- 
flection coefficient R for incident plane waves is, in the low-frequency limit, 

R = - 1 .  (2.34) 
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The result (2.34) is the basis for Bechert’s (1979) simple theory of nozzle-flow sound 
attenuation; it is entirely dependent on the satisfaction of a Kutta condition at the 
nozzle lip (see later). 

It is clear that in this low-frequency limit there are no contributions to the pressure 
from instability waves. This follows from our approximation to K+(u) in which we 
set the instability poles uo, u t  a t  1/M, rather than the more exact value (see appendix 
A) of (1/M) (1 _+ ia). If the latter value had been used in E+(u) there would have been 
contributions to the pressure from these two instability waves, growing and decaying 
exponentially along the jet. The value of the contribution to the pressure from these 
two poles is O(a*), which is negligible for low-enough frequency. The axial velocity 
in the jet does, however, contain contributions corresponding to the instability waves 
and it is given exactly by 

(2.35) 
p1 c1 k2Di J,(kwa) eak ku du 

u, = - 
kwJk(kwa) i(p - ku) K+(u) K-(p/k)  (1 - MU) ppj’  

which in the low-frequency limit becomes 

The contributions from the poles u = 1/( 1 + M ) ,  - l/(l - M ) ,  are the acoustic waves 
discussed above. The contribution from the pole at  u = l/N, gives the velocity 
fluctuation 

2 
u, = - exp ( - i k x / M ) .  

PI cj 
(2.36) 

We see that this represents a convected instability wave, albeit of vanishingly small 
growth rate. If we had used the more complete form of K+(u), u, would have been 
given by 

. r+= 

and the instability-wave contribution to this gives 

e-ikZ/M 
u, = - [ ~ ~ u x / M  + e-ko~/M] 

PI c1 
(2 .38)  

which tends to the previous result (2.36) for x Q l/a, but displays clearly the ampli- 
fication and decay factors of spatial instability waves convected with the jet speed. 

We can also derive the jet displacement due to these instability waves : it is 

(2.39) 

For small x ,  x 5 M / k a ,  this expression shows that the shear-layer displacement 
grows linearly with distance from the end of the pipe. This expression is only valid 
for x $ a, however, since our expression for K+(u) waa only valid for uka Q 1, and 
the behaviour near x = 0 depends on the value of K+(u) aa u -f ao. Despite this, 
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however, the approximate form of r](x) does at least give zero displacement at x = 0, 
even if the slope of the shear layer is non-zero; the exact equation for r](x)  does of 
course have zero slope at x = 0. 

The linear growth of the amplitude of the instability waves with distance has a 
simple physical explanation. Consider a jet with an instability wave of negligible 
growth rate whose axial velocity fluctuation is u, = Qexp [ iw(t-x/Uj)] .  For this 
wave, the pressure fluctuation zero. Therefore the 
written 

where v is the radial velocity, and hence 

iwr 
v = - Q exp [iw(t - x/U,)]. 

2u, 

Now the displacement of the jet boundary is related to 

continuity equation can be 

the velocity o by 

ar] ar] -+ uj- = 0. 
at ax 

We assume that r ]  is of the form r] = q(x) exp [iw(t -x/Uj)], and then it is clear that if 

(2.40) 

This is precisely the relation (2.39) obtained from the exact analysis. 

(2.29),  

We consider next the sound field outside the jet. The pressure fluctuation is, from 

(2.41) 

and in the far field this expression is best evaluated by the method of stationary phaae. 
The stationary point is at 

u = c cos e/(i + aMC cos e), (2.42) 
so that 

p --I+" 1 p j  c! k2yD; H $ ? ( b )  e a k  k du 
kwHg)'(kwa) (p- ku) K+(u) K-(p/k)' O - 2ni 

' " ( k ~ )  (,!A - ku) K+(u) K - @ / k )  

kP, C4 kVDt 
= 

4nR( 1 + aMC cos 0)  

evaluated at 
c COS e 

1 + MaC cos 8' 
U =  

where ( R ,  8) is the position of the far-field observer in so-called 'emission-time' co- 
ordinates (figure 3). The bracketed term becomes, on substituting for K* from 
appendix A, 

By substituting for y ,  C, M we can then rewrite po as 

A 1 iwPo(2PilPj Cj) exp - ioR/col 
= T R (  1 +aMCcosO) ( 1  - M C (  1 -a) ~ 0 ~ 8 ) ~ '  

(2.44) 

(2.45) 

where A j is the duct area, and 2p, /pj  cj may be recognized as the velocity fluctuation 
uN at the exit of the duct. The significant features of this formula lie in the scaling 
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Jet 

FIGURE 3. The emission-time co-ordinates R, 8. 

of the level (for a given uN) on the far-$el$ density rather than the jet density, and in 
the field shape. The field shape is determined by the product of a Doppler factor 
based on the external flow velocity and the square of a Doppler factor based on rela- 
tive flow velocity. This latter dependence is characteristic of low-frequency acoustic 
sources placed inside infinite jets (Goldstein 1975; Dowling et al. 1978). For angles 
close to 90" (M cost9 < 1) the effect of 'flight' (i.e. external flow) is represented by a 
factor (1 + aMC cos on the intensity, which is identical with that found experi- 
mentally by Pinker 6 Bryce (1976). 

We now discuss the flows of energy in this problem. In  the jet pipe the net power 
flow is given by 

WN = - A i d  [( 1 + M)' - I RI ' ( 1 - M)'], (2.46) 

where pi is the strength of the incident wave field, and R is the pressure reflection 
coefficient. In  the limit of low frequency we have shown that R = - 1 , so that 

Pi C i  

(2.47) 

This implies that there is a net flux of acoustic energy along the pipe, proportional to  
the Mach number, and independent, to first order, of frequency. This is in contrast 
wih the case of zero flow, where the net energy flux is of order 

In the jet the only significant motion is associated with the convected instability 
waves. Since there is negligible fluctuation in pressure associated with them, the only 
energy flow is a. flux of kinetic energy. This is the product of the fluctuations in kinetic 
energy and m w  flow, so that the net energy flux in the jet is 

(2.48) 
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where we have taken the velocity fluctuation as ux = 2pi/pjcj. It is clear that in this 
low-frequency limit there is a total conversion of acoustic energy into kinetic energy 
associated with the instability waves. We shall show later that this conversion of energy 
is critically dependent on the imposition of a Kutta condition. 

The power radiated to the far-field is found to be (Munt 1982b) 

(2.49) 

which on substituting for the far-field pressure level p(0,  R) from (2.45), integrating 
and putting A J = nu2 gives 

(2.50) 

where MR = MC( 1 -a)  = (uj - &)/co. 

This expression is the product of the net incident energy in the pipe in the absence of 
flow, the square of the compactness ratio ka of the jet, the ratio of the impedances of 
the jet and ambient medium, and a factor which depends on the velocity of the jet 
relative to  the surrounding fluid and which causes the power radiated to  increase 
rapidly as MR + 1. When the jet and ambient fluid have the same velocity the power 
radiated is unaffected by Mach number. The singularity in the radiated power when 
MR = 1 could have been avoided by using a more accurate expression for K+(u);  
then the Doppler factors 1 - MC( 1 - a )  cos 8 would have been replaced by 

[( 1 - MC( 1 -a )  cos O ) Z  + a2M2]4 

and the singularity at the Mach angle removed. 
I n  their study of jetnoise,Dowlingetal.( 1978) haveshown that, when a low-frequency 

acoustic source is placed in a jet, the radiation from it changes dramatically if the 
temperature of the jet increases to such an extent that 'it is hotter than it is compact ', 
that is when po/pj 9 (ka)21n (ka). We analyse the propagation of sound out of a 
jet pipe in this limit. 

The sound pressure outside the jet is again given by (2.41). When the jet is very hot 
we have shown (appendix A) that  the form of tJhe split functions changes, and on 
substituting for the split functions in the low-frequency limit the far-field pressure 
is now given by 

A ,  iwp, uN( 1 + M )  e-iwR/co 

= 2n2R( 1 + MaC cos O)2 (ka)21n (kaC) cos 0' 
(2.51) 

Compared with the previous result, the field shape for the light jet does not show the 
downstream Doppler amplification, but is infinite in the side-line (90") direction. 
We see therefore that the ' light-jet ' condition always fails at this position, as one 
would expect from the fact that that condition is a Compactness condition, n-liich is 
necessarily violated around the Mach angle, which in the lii~li-temperature case is 
the 90" position. The field in the jet is given by (2.31) and, substituting for K+. I<-, 
we find the pole contributions at u = 1 /( 1 + M ) ,  - I / (  1 - IS). - ie. The first of these 
does not, unlike the case considered earlier, caiiccl the incichi t field, which now con- 
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tinues to propagate along the jet. In this limit the jet itself behaves, to first order, as 
a semi-infinite rigid tube. The pressure due to this pole is given by 

and the level in the jet due to the pole at  u = i s  is given by 

( l + M ) .  
2 p j  - s2e-ekx 
77 

(2.52) 

(2.53) 

Both these fields (which arise for x > 0) are small in the light-jet limit (s small). 
The reflected sound field in the jet pipe is given by the contribution from the pole 

(2.54) 

Clearly then, the reflection coefficient is of order [y(ka)21n (ka)]-l, which is small in 
this light-jet limit. 

We have thus shown that if the jet is sufficiently hot then there is a radical change 
in the acoustic behaviour of the jet-pipe system. Most of the sound is no longer 
reflected back up the pipe, but continues trapped inside the jet. The reason for this 
is seen by examining the relation between the pressure gradient and displacement 
on the jet boundary: 

1 aP - D2q+--  = 0. 
Dt2 poi% 

From this it is clear that if po is greatly increased, and tends to infinity, then for a 
given value of pressure gradient the boundary displacement must tend to zero. In  
the far field the radiation is reduced compared with that for the non-light-jet case, 
except for angles close to the side-line direction. At this 90" position (corresponding 
to the Mach angle), the compactness condition of the light jet does not hold, as already 
observed. An addition feature of the light-jet limit is that the instability waves on 
the jet column are suppressed. 

We now consider, in less detail, the radiation from higher-order spiral duct modes. 
In the low-frequency limit it is well known that in the absence of a mean flow sound 
radiates very inefficiently. Substituting for the split functions Kk(u) from (A 14) in 
the expression for the sound field outside the jet, we find that, in the low-frequency 
limit, the radiation field is given by 

a e-iwR/co( ka)m sinm O( 8nlm) y 
= 4nR( 1 + aMC cos O)m [ ( p l k )  (1 + aMC cos 0) - cos 01 [( 1 - MC( 1 - a) cos 8)2 + Y]' 

(2.55) 

This formula shows that, as the mode number rn increases, the power radiated at a 
given (low) frequency progressively decreases. The radiation is predominantly in the 
side-line direction, and the effect of flight is largely that of the Doppler factors 
1 + aMC cos 0 which shift the field further forwards for higher values of a. For suffi- 
ciently low frequencies, p / k  becomes ijhn/ka( 1 - M2)*, which is much greater than 
unity, so that the far-field pressure can be written 

a e-iwRlco(ku)m+l8n( 1 - M2)$ sinm 8 
Y (2.56) 

= 4 7 7 ~ (  1 + cos e ) m + l  mij;, (1 - MC( i - a) cos 012 + 
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The radiation from all of these higher-order modes varies as a higher power of ka 
than that from the plane-wave mode. Further, for a given pressure level at  infinity 
upstream, the pressure level at  the nozzle, on which this radiation scales, is exponen- 
tially small, 

The field in the jet and pipe, r < a, is obtained as before. In the usual limit of both 
low Helmholtz number and low Strouhal number, the pressure field is given by 

(2.57) 

Unlike the plane-wave case considered earlier, the instability wave does now have 
a pressure disturbance associated with it, which increases in proportion to the Strouhal 
nurnberforagiveninitialamplitude. Thegrowthrateisgivenby ky( 1 - a ) / M ( l  + a2y2), 
which va,nishes when there is no velocity difference across the jet boundaries. Further, 
these non-axisymmetric waves are amplified with distance downstream, even for the 
lowest frequencies, although there the initial disturbance level is very small, owing to 
the aforementioned dependence on frequency, and the exponentially small level of 
the sound at the pipe exit due to the spiral acoustic modes being cut off in the pipe. 

exp [ - ik( 1 + iy) x/( 1 + i ay )  MI (1 - M2)* ka 
Pi = (‘a) 2jL,M( 1 + ay2) 

2.2. Subsonicjet with 120 Kutta condition 

We describe here two types of problem relating to a jet with no Kutta condition. 
Firstly we consider the case where a jet eigensolution is added on to the Kutta- 
condition solution, by taking c(u) in (2.24) as constant. Secondly we adopt an approach 
due to Howe (1979). Instead of assuming the existence of an instability wave in the 
jet, he assumes that the jet motion consists of some other neutrally stable wave which is 
convected at a Mach number, vM,  less than the jet Mach number M .  He then finds 
the field due to this and matches it to the nozzle flow. He adds this field to that found 
with no Kutta condition, and forces the total to satisfy a Kutta condition. 

We examine first the case where c(u) is a constant C,, say. Then (2.27)-(2.29) 
become i 

[ E  + COll 
- p,c? k2DtJ,(kvr) 

P u  
= kvJL(kva) K+(u)  

(2.58) 

(2.59) 

(2.60) 

- 1  
i(y - ku) K - ( y / k )  a 

where we have defined E =  

By choosing different (non-zero) values of C,, we can obtain a whole range of solutions, 
none of which obeys a Kutta condition. One of these is of special interest: that where 
C, is chosen to remove the instability pole uo. We choose 

and then 
- k(u - u,) 

+ “ = ikK+(p/k,)  (p - ku,) (p - ku) ‘ 

(2.61) 

(2.62) 
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Clearly, the net effect of this is to multiply the Kutta condition solutions in u by 
(u - uO)/(,u/k - uo). When the constant Co is chosen in this way, the formula for the 
far-field sound (2.45) then becomes 

(2.63) 

The major difference between this and the previous result is the removal of one of the 
relative-velocity-based Doppler factors, which resillts in a considerably less directional 
sound field. 

The corresponding multiplier for the field inside the pipe is obtained using 

u = - l / ( l -M) ,  

so that the reflection coefficient has changed from - 1 to - (1  + M ) / ( l  - M ) .  It is of 
particular interest that the power flow in the duct, which is proportional to 

(1+M)2- IR12(l-M)2, 

is now precisely zero. Therefore, we conclude that the imposition of a Kutta condition 
is essential for a transfer of power from acoustic to hydrodynamic jields to take place. 
With no Kutta condition, and no generation of growing instability waves, almost all 
the incident energy is reflected back up the duct, a negligible O(k2a2) fraction being 
diffracted to the far field. 

Howe proceeds by adding on to this non-Kutta-condition solution the field due to 
a jet motion convected a t  a speed vMq. We assume that in the absence of the pipe 
this wave would induce a jet displacement Zle-ikzlvM. 

Using this as the incident disturbance, we solve for the field in the same way as for 
the incident pressure wave. Then the value of 2 is chosen so as to cancel the resulting 
singularity in velocity at  the edge; so that the original solution is multiplied by the 
factor (u - uo) ( 1  - Mv,u/k)/(,u/k - uo) ( 1  - Mvu,). In the far field this must be evaluated 
at  the stationary-phase value of u, to give, with p/k = 1/( 1 + M ) ,  uo = l/N, 

Thus we see that as v is varied between 0 and 1 the solution changes continuously 
from the non-Kutta-condition solution to the Kutta-condition solution. The major 
change in the far field, as compared with the Kutta-condition solution, lies in the 
replacement of the 1 - MC( 1 - a) cos 8 Doppler factor by one based on the convection 
speed of the waves. This results in a less directional radiation field, with a corresponding 
reduction in the acoustic power radiated. 

The reflection coefficient is obtained by substituting u = - 1/(1 -N), giving a 
multiplier (1  + (1  - v) M ) / (  1 - ( 1  - v) M). The reflection coefficient varies again from 
its Kutta- to non-Kutta-condition values as v is altered. This is only to be expected, 
since with v = 1 the convected waves are indistinguishable from the instability waves, 
while with v = 0 there is no spatial variation, and the wave is effectively absent. 

In  this deriva on of the radiation the existence of the waves convected at speed 
vMcj is only an sumption. There are grave doubts over its validity, since the wave 

theless, the idea remains a plausible means of representing in some way the character- 
istics of the real jet flow. 

is not in fact th B solution of any equations governing the motion of the fluid. Never- 
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FIGURE 4. Positions of branch cuts and regions of regularity R+, R-,  
in the complex u-plane for supersonic flow. 

2.3. Supersonic jet 
When we come to the supersonic jet the basic equations are the same; the difference 
in the solution concerns only the position of the branch cuts of the u-plane. When 
M --f 1 ,  the branch point a t  - 1 / ( 1 -  M )  goes to -a for subsonic flow, but when 
M > 1 it reappears on the other side of the diagram at 1 / ( M  - 1). This is a consequence 
of the impossibility of waves propagating upstream against the supersonic flow. The 
resultant branch cuts and positions of R f ,  R- for M > 1 are essentially as described 
by Morgan (1974), and are shown in figure 4. It is assumed in this diagram that 
l / ( M -  1 )  > C/( l  -aM) > l / ( M +  1 ) .  If this is not so, the order of these points on 
the real axis is correspondingly changed. 

We consider the case of an incident plane wave propagating down the jet pipe 
towards the exit, 

(2.64) 

and c o n h e  the analysis to  plane waves purely for simplicity. There is no other reason 
for doing so here since all modes are cut on in supersonic flow. The derivation of the 
field due to the higher-order modes follows in an altogether similar fashion. 

As ka + 0, it is shown in appendix B that (unless u 9 l / k a ,  01 + 0) K-(u) = 1, 
K f ( u )  = K(u) .  Then the formulae used previously may be applied, with the previous 
value of K+(u) multiplied by J,,(kva)/v, and the factor K-(,u/k) multiplied by v-(,u/k). 
Consequently, all the Fourier-transformed quantities Pj(u), Po(u), Z(u)  are multiplied 
by 

pi = exp [ - i p l ,  p = k/( 1 + M ) ,  

v-(u) 1 
i=iJqJ,(kva)= Q (say). (2.65) 

In the above discussion we did not mention the edge conditions to be satisfied near 
x = 0, and on which there was previously so much emphasis. At high kva (u + a) 
the kernel K ( u )  has a behnviour similar to its two-dimensional vortex-sheet equivalent. 
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The latter case has been examined in detail by Morgan, who finds that K+(u) is 
O ( u ) ;  u -+ 00, resulting in a displacement q(x) - x; x +- O+. The displacement is 
therefore continuous across x = 0, but its slope is not, so that a Kutta condition in 
the subsonic sense cannot be applied. However, one would not expect it to hold for 
this unsteady supersonic flow, any more than it does in steady supersonic flows, and it 
cannot because of the impossibility of the downstream motion of the jet affecting the 
edge. Besides that described above, further solutions corresponding to the subsonic 
non-Kutta-condition solutions could be obtained. These would be even more singular 
at  the edge, and are physically implausible (displacement at  the edge must at least be 
discontinuous). 

We determine next the far-field sound level. This is given by its subsonic value with 
a Kutta condition, multiplied by the above factor (2.65), evaluated at  

The far-field pressure is accordingly 

u = C cos 8/( 1 + aMC cos 8). 

(2.66) 
iwAlu,poe-i"R/Co (1  + M )  [I - Ccos B(M( 1 -a) - l)] 

47lR (1  - ( 1  - ~)MCCOS 8)' (1 -I- ~MCCOS 8)" Po = 

The interesting features of this formula are the large values of forward arc amplifi- 
cation (the exponent of 1 + aMCcos 8 is increased) and the factor 

1 - c cos B(M( 1 - a) - 1). 

The latter causes the field to have a zero if C(N( 1 - a) - 1)  > 1. 
The reflected field inside the pipe is now precisely zero, since the pole at 

u = - l / ( l - M )  

is no longer present. In fact the field inside the pipe is precisely zero everywhere, 
since all the poles representing cut-off waves inside the pipe are now in R-, and cannot 
contribute for x < 0. 

We consider the field in the jet in more detail; it  is given by 

(2.67) 

The pole at  u = 1/(1+ 2 M )  cancels the incident field. The other poles a t  Jo(kva) = 0 
are the unsteady flow analogue of the steady wave structure of an imperfectlyexpanded 
supersonic jet. (We did not consider them for the subsonic jet, since there they repre- 
sented fields that decayed exponentially along the jet axis.) These poles occur at 
kva = jh. Substituting in the formula for the pressure inside the jet and ignoring 
terms of O(ka),  we find that pj can be expressed as the sum of contributions from 
these poles: 

(2.68) 

This formula, which is composed of contributions from the quasi-periodic wave 
structure, is valid for x < l / h .  A form valid over the whole distance xis only obtained 
by use of more exact approximations for the poles. In addition to these contributions 
to the pressure in the jet, there is again an instability wave present, which only affects 
the velocity (see 3 2.1). 
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in the incident sound wave alone, and is accordingly 
We next consider the energy flows involved. Inside the duct the energy flux is that 

The energy in the instability wave is 

(1 + M ) 2 p f A  w, = (pAu') (U'V) = -- 
M P m '  

(2.69) 

(2.70) 

Clearly the energy in this wave is not equal to the net energy in the jet pipe. However , 
there are now two additional contributions to the energy - that due to the coherent 
wave structure alone, and that due to the interference field between it and the insta- 
bility wave. This may be contrasted with the work of Howe & Ffowcs Williams (1978), 
who considered the scattering of the coherent wave by random shear-layer turbulence. 
They found that all of its energy was scattered into sound, there being no coupling of 
the coherent structure and instability waves. 

The energy flux across a section of the jet is given by W = /dAh&u;), where Ib; 

is stagnation enthalpy. Splitting this into components due to the coherent wave 
structure, p , ,  u,, and the instability wave ui (pi = 0)) we obtain 

w =/@+uuc+ VU,) (%+pu,+pui ) dA (2.71) 

Now the fluctuation due to the coherent wave structure is to first order quasi-static, 
so that p,/p+u, U = 0. Therefore, the contribution to the integral due to this wave 
structure alone is negligible, and the only important term (apart from the instability 
term already calculated in (2.70)) is the interference term 

Wint = 1% U ( P ,  U/c2 + u, P )  d A .  

Substituting for p, ,  u,, ui, and integrating over the area of the jet, 

(2.72) 

(2.73) 

For finite x, the cosine terms dominate, and the exponential can be ignored. 

W, = 
the length of the jet, perimeter S. The velocity in the coherent field is given by 

We now consider the fiux of energy through the walls of the jet. This is given by 
dS dx ( Uu,) v, p, where v, is the radial velocity in the coherent field, and x is 

u av,/ax = - p-1 ap/ar, 
so that using (2.68) 

v,=- P +m 2sin (xjn/Pa) Jh(jnT/a) fi (2.74) 
M -m j n  JiLin) P1 cj 

Hence, substituting in the expression for Mk and integrating from 0 to x, 

PZ [cos (jnx//3a) - 1 1 2 .  
- m  Mj: P1 Cl 

(M2- 1) ( M +  1 )  W, = 2 h a  (2.75) 
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This contribution, when added to the previous one, gives the total power through the 
walls and cross-section of the jet up to a certain distance x as 

Adding W, to the net power K, in the jet instability wave, we obtain a total power of 

(2.77) 

This is precisely equal to the power in the incident wave, We have therefore shown 
that, with a supersonic jet, all the power in the incident jet-pipe acoustic wave is 
converted into either hydrodynamic kinetic energy or into the power in the inter- 
ference field between the quasi-steady wave structure and the instability wave. 
Indeed, in this case all the incident acoustic energy is in some sense absorbed, and the 
basic phenomenon found by Bechert et al. (1977) for a subsonic jet applies equally for 
a supersonic jet. 

3. Scattering of an external sound field by a cylindrical pipe with flow 
The present problem has also been solved approximately by Jacques (1975). He, 

however, finds a formula for the far-field scattered sound that is different from ours. 
We shall show in 8 5 that his result is incorrect because in his application of the acoustic 
analogy he omits certain source terms. 

3 . 1 .  Subsonic jet 
We consider an incident plane acoustic wave with pressure e--ikulx-kalg,  in which, if 
the wave vector is a t  an angle 6, to the jet axis, u1 = C cos 6,/( 1 + aMC cos 6,). 

We first split this up into its circumferential modes to find that the incident pressure 
field is 

m 

0 
pi = I; em( - i)“ J,(kv,r) cosmg5 e- ikulx,  (3 .1)  

where vl = v(8,), em = 1 (m = 0), em = 2 (m $: 0). 
To apply the theory of the 3 2 we require the pressure that would have existed on 

the wall of the pipe had the pipe been infinite. To find this, we add on to each modal 
term an extra term A,Hz)(kv,r)  and apply = 0 on r = a+, to obtain 

em( -i)” = -AmHg)’(lcvla), 
so that 

To thelowest order in ka we find that the plane wave (rn = 0 )  component is p = e-ikulx, 
while the &st spiral mode component is 

p = -44ikvlae-ikulx on r = a. (3 .4)  

The component (3 .4) ,  and the other components with m > 0 are smaller by a factor 
at least than the m = 0 component as ka --f 0,  and can accordingly be neglected. 
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We therefore concentrate on the plane-wave component only. For this external 
forcing, the derivation of the Wiener-Hopf equation proceeds in a similar manner 
to  that of Q 2. The only difference lies in the wavonumber of the incident field, which 
we take as ul. Consequently, examining the rest of the theory, we see that the Fourier 
transformed pressures and displacements have their previous values (2.27)-( 2.29) 

- . .  
multiplied by the factor 

-- u - F / k  W P / J 4  
u-u1 K-(ul) * 

(3.5) 

I n  the far field this must be evaluated a t  u = Ccos8/(1 -aMCcosO), and it then 
becomes 

(3.6) 

Compared with the field shape of internal noise this has two interesting features. 
Firstly, i t  is singular a t  0 = Bo. This singularity is spurious, and is similar to that found 
in half-plane diffraction problems on geometrical-optics boundaries. I t  can be removed 
using an improved evaluation of the stationary-phase integral, taking account of the 
fact that  when 8 N So, the integrand has a pole near the stationary phase point. 
Secondly, the field is zero at  the angle 8 = arccos [ C / (  1 + (1 -a) M)]. This is the ‘ cone- 
of-silence’ angle for sound waves passing from the jet to the far field. 

In  addition to the scattered field discussed above there is an additional field present 
due to  the pole at u = ul. This cancels, in a manner entirely familiar in diffraction 
theory, the portion of the incident field that represented sound reflected off the duct 
walls, but it only exists €or angles less than 8, to  the jet axis. 

To obtain the fields in the jet and pipe we again use the previous solution, multiplied 
by (3.5). The pole a t  u1 represents the sound waves inside the jet due to  the incident 
field. These are pressure waves of amplitude equal to that of the incident field, i.e. 
p ,  = pie-iul Lx. The field reflected up the pipe is given by the pole a t  u = - 1/( 1 - M ) ,  
for which the above multiplier is equal to  - 1.  Therefore the amplitude of the reflected 
wave is equal to that of the incident wave. The pole a t  u - 1/M once again gives the 
instability waves, whose effects are felt only as an axial velocity surging, the pressure 
perturbation being absent. Then the above multiplier (3.5) is 

[ 1 - C( 1 + M (  1 - a) case)] [ 1 + Cc0sOo( 1 - M (  1 - a))] 
2(c0s o - COB e,) c 

-!( 1 - 2 ) .  U 

2 1-Mu, 

so that the instability wave has an axial velocity fluctuation 

(3.7) 

This completes our evaluation of the sound scattered when low-frequency plane 
waves are incident upon a cylindrical pipe with internal and external flows. It is of 
interest to  compare our results with those of Jacques (1975). In  his paper, he first 
derives the ‘zeroth-order ’ fields in the jet and the pipe, neglect,ing the secondary sound 
radiation. Then he applies the acoustic analogy to determine the latter. It is clear that 
the zeroth-order fields which we derive here are identical with his approximate solu- 
tions. Our result differs only in the field shape of the radiated sound field, which is more 
complicated than his. The two results are unequal even in the Iow-Mach-number limit. 
We pursue the applicat,ion of the acoust,ic analogy t,o this problem in some detail in $4. 
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I n  discussing the relevance of his model, Jacques supposes that the incident sound 
waves are caused by some near-field turbulent pressure fluctuation from, say, a nearby 
jet. Therefore he takes the incident pressure to  scale as pi N pU2, where U is some 
turbulence velocity. Inserting that into either our or his formulae for the far-field 
sound gives sound levels scaling as p N pU2( U / c , )  (all?),  where it is assumed that the 
incident pressure has frequencies proportional to this velocity U .  We feel his modelling 
to be inappropriate. If the pressure fluctuations do scale in this way, and are further 
the result of some nearby aerodynamic disturbance, then the incident sound field 
cannot be modelled as plane waves. I n  that case, a more appropriate modelling would 
involve quadrupole sources, as mentioned briefly in $ 6 .  I n  spite of our misgivings 
about Jacques' problem, it appears, none the less, that  the scaling laws given by 
Jacques for aerodynamic disturbances are indeed correct. 

In  our treatment of the scattering of external sound waves we have neglected such 
factors as the finite growth rate of the instability waves, and the light-jet issue. I n  
this problem, though, the basic phenomena they represent are no different from those 
with incident internal noise, and the corresponding results could easily be derived. 

We consider briefly the effect of relaxing the Kutta  condition a t  the exit of the pipe. 
Generally the changes, compared with the case where a Kutta condition does apply, 
are similar to those for internal noise. As before, we can relax the Kutta condition by 
choosing some constant value of C(u) in the Wiener-Hopf equation. When we choose 
C(U)  so as to extinguish all the unstable waves in the jet, the overall effect is to multiply 
all the P(u) ,  Z(u) by (u- u,)/(u, -uo), where u, is the instability pole. For the far 
field this factor, with u = C cos 0/( 1 + aMC cos O ) ,  becomes 

(1 +Mac cos 0,) (1 + MC( 1 -a) cos 0) 
( l+MaCcos0)(1  +MC(l-a)cos0,) '  (3.9) 

The effect on the field shape is to  replace one of the relative-jet-velocity-based Doppler 
factors by one based on the relative velocit,y and incidence angle 0,. There is increased 
Doppler amplification in the upstream arc due to external flow. 

The field transmitted up the pipe is given by the above factor with u = - 1 /( 1 - M ) ,  
that  is 

1 + aMC cos 0, 
(1-M)(1-M(1-cr)Ccos0,)' (3.10) 

This field is usually larger than that for the Kutta-condition case, and may become 
very large as M + 1. The field in the jet arises now only from the pole at u = 1 /( 1 + M ) ,  
since the pole a t  1/M representing the instability wave is cancelled; with u = 1/( 1 + M )  
we have t o  multiply the Kutta-condition solution by the factor 

1 + aMC cos 0, 
(1 + M ) ( 1  -M(1 -a)Ccos0,)' 

(3.11) 

In  the above discussion we have not considered the energy flows involved, as we 
did for incident internal noise. The issue is felt to  be unimportant here, since there is 
no clear 'incident' energy flow to act as a reference point. The only useful reference 
quantity is the net acoustic energy flow inside the jet, due directly to the incident 
waves. Then there is an interesting counterpart to  the acoustic energy conversion 
discussed earlier, in that some energy is converted to kinetic energy, which is carried 
away by the jet instability waves. 
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3.2. Supersonic j e t  
One of the most interesting aspects of Jacques' work is the prediction that the sound 
scattered vanishes when the jet is sonic. We have shown in 5 3.1 that in our solution 
this does not occur. As we will see in 3 4, fields such as those leading to  the radiation 
field can be built up from monopoles and dipoles at the exit plane, dipoles on the 
outside wall of the pipe and quadrupoles on the downstream shear layers. Jacques 
considers just the first of these and finds them to vary as 1- M. This neglects the 
quadrupole sources which do not vanish a t  M = 1. 

We now examine the supersonic jet problem ( M  > 1). Then, with the same incident 
wave as in Q 3.1, and with the same modifications to the internal-noise theory, we can 
use the theory of Q 2.3. Then the functions P(u) ,  Z(u) are multiplied by the factor 

(3.12) 

which is equal to - (u-p /k) / (u-uJ ,  since K -  = 1 for supersonic flows a t  low 
frequency. 

The far-field sound level is therefore, for a given p i ,  multiplied by this factor eva- 
luated a t  u = C cos 8/( 1 + aMC cos 0)) giving a multiplier 

- [ l -  (1 + (1 -a) MCCOSO)](~ + ~ M C C O S  00) 
q c O s  e - cos e,) (1 + M) 

(3.13) 

We notice that these factors are similar to those in the subsonic case, giving a sound 
field zero a t  the cone-of-silence angle 0 = arccos 1/( 1 + (1 - a) M )  C, and with the 
stationary-phase calculation failing a t  0 = 0,. There is no hint of the field becoming 
zero when the Mach number approaches one. 
. The field in the pipe is still zero, as it was for internal noise, since the factor 
- (u -p /k ) / (u -u l )  is still finite with u = - l / ( l - M ) .  The pressure fields in the 
jet are also multiplied by this factor. For the cellular wave structure, with u N O( I/ka), 
the pressure amplitude is changed only in sign. The value of the instability-wave axial 
velocity is multiplied by the factor with u = 1/M, namely 

(3.14) 

In  all this, the field representing the incident wave is, of course, p = p i e - i k u l x ,  as it 
was for the subsonic case. 

- i + M@C cos e, 
( l+M)(l-( l -a)Ccos8,) '  

4. Acoustic analogies 
In this section we use two forms of acoustic analogy to  derive equations for the 

sound field. These enable the far-field sound to  be ascribed to various monopole, 
dipole and quadrupole sources. The results are of interest for several reasons. In  the 
past these analogies have been used alone t o  determine the far-field sound. I n  most 
cases this has been done incorrectly, ignoring the quadrupole sources. We show that, 
at high Mach numbers, these quadrupole sources are responsible for most of the far- 
field sound. Further, we show how the O(1) fields induced in the pipe and jet may be 
(ledu(w1 by simple masoning in the low-freqnency limit, without reference to  the 
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Wiener-Hopf solution to the complete problem. We then use these zeroth-order fields 
to evaluate the source terms. 

We consider two forms of the acoustic analogy: that derived from Lighthill's (1952) 
equations, and a different analogy, due to Dowling et al. (1978), incorporating a mean 
flow. An alternative analogy is that of Howe (1975), which relates the sound field to 
unsteady vorticity. Howe (1979) has used it to discuss the transmission of sound out 
of a pipe with flow with results similar to those of our analysis, but restricted to low 
Mach numbers. 

4.1. The Lighthill analogy 

Ffowcs Williams & Hawkings (1969) have shown that the equation governing the 
sound field created by a moving surface defined by f (x) = 0 and moving at a speed 

where u is the fluid velocity, qj = pu,ui + p i  - C: (p - po) Sii is the Lighthill acoustic 
stress, andpii the compressive stress tensor. We apply this to a surface that encloses 
the end of the nozzle and the outer walls of the pipe. To take account of the external 
flow, we express the solution to this equation in convected co-ordinates such that the 
nozzle is fixed relative to the observer. Then, the Green function G satisfying 

~a a [g-c:&] G = S(t-to)S(x-xo), - Dt = - at + ' 0 %  (4.2) 

is 
S( t  -tt,-R/C + P. X o / (  1 - M . P)) c= 4nR( 1 +Mo. P) c: 9 (4.3) 

where P is the direction of the observer relative to the source, and the result is valid 
in the far field. 

From (4.1) the sound field is given by 

where li is the .:orma1 to the surface S. In the problem under consideration, the 
derivatives may be taken outside the integrals to give the far-field result 

where the square brackets signify that the integrals are to be evaluated a t  the retarded 
time t - R/c  + yr/( 1 + Mo cos e), Mo = Uo/co, and r and n denote the radiation direction 
and the normal to the surface X. 
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We now examine the quadrupole term in more detail. The stress tensor can be 
written in the form ITr = (er + Tir) H ( g ) ,  where g = 0 is the boundary of the jet, and 
F,.,. and TLr are respectively the mean and fluctuating components of qr. We now take 
the time derivatives inside the integral, and split g into g + g', its mean and fluctuating 
positions. Then 

a9 a9 
ax, 

and, if g moves at velocity v, = 0, 

where we have ignored terms of second order in the fluctuating quantities. Thus the 
sound due to the quadrupole sources can be written 

1 a S [ H ( f ) ~ H ( g ) - ~ r H ( f ) 6 ( g )  w i g ]  dV. (4.8) 
(' - " I Q  = 4nRcb( 1 + Mo cos 0)3 at 

It is clear that the source term due to the steady part of qj, acting over a variable 
volume, is equivalent to a surface source. We may also write the sound from this 
quadrupole as 

where S; is the exterior surface of the jet, which moves at velocity V. This is the 
velocity measured in free space. It is convenient to convert this into a velocity in the 
jet flow. To do this we write vn = @/at,  where q is the radial displacement of the jet 
boundary. Then the velocity un inside the jet is related to the displacement by 

so that 

a J [un T ~ I  d x J  * (4.10) 
1 

= 4nRcb( 1 + M, cos 0) (1 - MR cos O)2z 
In this expression the change to the fluid velocity in the jet has caused one of the 
Doppler factors based on the external-flow Mach number M, to be replaced by one 
based on the relative flow velocity (Ui - U,) = M,c,. 

For many purposes it is useful to relate the integrand of (5.10) to the pressure and 
velocity in the jet, since the radial velocity of the fluid in the jet is not a quantity 
easily calculated in our problems. The equation of continuity is, after linearization, 

w -+p1c5V.ul = 0, (4.11) 
Dt 

so that, if we consider a section of the jet flow, we find that 

(4.12) 
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where X,,S, are the axial cross-section and the outer surface of the jet. Hence we 
find that for a section of the jet of length dx 

For an axisymmetric motion of the jet it follows that the ‘steady’ quadrupole term is 

where the region of integration is the volume of the jet. We now apply the above results 
to  a number of practical cases. 

4.1.1. Internal noise propagating down a pipe with internal and external flow. we 
consider initially the situation described in 3.1, and first estimate the relevant source 
terms. Clearly, the pressure and normal velocity on the surface of the pipe are small 
and zero respectively, so that the sources on the outer wall of the pipe are negligible. 
At the nozzle exit the pressure fluctuations are similarly negligible, as the flow cannot 
respond to low-amplitude fluctuations in velocity. Setting the pressure fluctuation 
at  the nozzle equal to zero, and assuming that the radiation at low frequencies is 
relatively small (O(k2a2) in energy), we find that the reflected amplitude within the 
pipe is - 1 times the incident amplitude, in agreement with the exact solution. The 
axial velocity fluctuation at  the nozzle is then given by uN = 2p;/pici, where uN is 
assumed constant across the nozzle exit. 

The motion in the jet is assumed to consist of the simple convected neutrally stable 
wave of axial velocity fluctuation and zero-pressure fluctuation; this is the limit of 
the cylindrical vortex-sheet eigenfunction for very low frequencies. We now use 
these zeroth-order fields to evaluate the individual source terms and sound fields. 

The monopole is 

Here v, is the velocity of the end of the pipe relative to the external fluid and is there - 
fore equal to - Uo; the velocity u, is then uN + (q - Uo), and with p -p, zero at the 
nozzle the monopole term is 

where A1 is the exit area of the nozzle. 
The dipole term is 

(4.16) 

(4.17) 

The quantities on the nozzle exit are the same as those used for the monopole source so 
that pnr = 0, pur(u, - v,) = pj(uN + Uj - U,) (uN - U,). Accordingly the dipole term is 

while the unsteady quadrupole term is 

(4.18) 
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Since the motion in the jet is dominated by the instability wave, p',p' are zero. Then 
with u = uN + (V, - U,) we find that if uN = u,(t - y / V , )  the quadrupole term t,akes 
the form 

p, A, 2MR cos2 8 * a2 y(  1 - (MI - M,) cos 6) 
(' - = 4nrRc$( 1 + No cos O ) 3 j 0  % [ uN ( - q( 1 + Mo cos 0) 

Integrating with respect to y gives 

p, A ,  2MR M, cos2 8 
(4.21) 

and the contribution from the point at infinity must vanish for a causal solution, 
since the disturbance will not have reached infinity in a finite time. It follows that 
the contribution to the sound field from this unsteady quadrupole source is 

(4.22) 

We now evaluate the steady quadrupole term. Since there is no pressure fluctuation 
in the jet this is 

Now the value of 2?,  is pi cos28(Uj - Uo)2-c;(pj -po),  so that 

and evaluating the integral as for the unsteady quadrupole, we have this sound field 
in the form 

(4.25) 

Adding the four source terms, we find that the total sound field is then 

1 ( 2 ~ ,  + M,) cos e 
- = PjA, 8% + [ x] ( ( 1 + M, cos 8)z ( 1 + M, cos 0)2 

monopole dipole 

unsteady quadrupole steady quadrupole 

and simplification of the curly-bracketed term gives precisely the sound field obtained 
earlier by the Wiener-Hopf method, namely 

(4.27) 

For high density ratios po/pj and for high Mach numbers this total field comes 
mainly from the steady quadrupole term. In particular, this is responsible for the scaling 
(for a given uN)  on the far-field density po rather than the jet density p ~ ,  and for the 
high convective amplification observed on the field shape. Further, it shows that in 
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problems of this kind involving coupled unstable wave motion, it  i s  never permissible 
to neglect the instability wave when calculating the sound radiation, Indeed the sound 
from these unstable (albeit neutrally stable a t  low frequencies) waves apparently 
dominates the far-field sound for high-enough Mach numbers. In some senses this last 
conclusion is not really surprising, as the dominance of quadrupole sources would seem 
to be a universal feature of high-speed flow. 

We now consider, in much less detail, the radiation from a very hot jet. From the 
results of Q 3.1 we find that all the sound energy is transmitted out of the jet pipe. 
The fields on the exit plane are obviously p' = pi ,  u = pi/pjci. These give dipole and 
monopole sound sources as described above, and both can be neglected here since 
they are proportional to the jet density pj, which is by assumption very small. Of the 
fields in the jet, that due t o  the propagating guided acoustic wave is very small 
(proportional again to pj),  and can be neglected. Because the density ratio is enormous, 
the boundary displacement is small (the jet boundary appears as if almost rigid). 
Therefore the steady quadrupole source is negligible. The remaining term is the quad- 
rupole due to the pressure wave 

2852 
p = pi-exp (-ckx), 

7T 
(4.28) 

For the essentially illustrative purpose of this section, we consider only the low- 
Mach-number case. Then the quadrupole element is dominated by the term p - c i p ,  
which in the limit po/p, -+ 00 is simply p'. Therefore the quadrupole field becomes 

p i  iwc, 2s2 
as e-+  0. 

4nRc: cos 0 7~ 

Substituting for E ,  we obtain the result 

(4.30) 

(4.31) 

which is precisely equal to the field calculated exactly in 0 3.1. We have shown further 
that this sound arises from the isotropic unsteady quadrupole term. 

In the above account we have only touched on the subsonic jet with a Kutta 
condition. However, since the purpose of this section was mainly to illustrate the 
principles involved, there seems little point in proceeding with the cases of a jet with 
no Kutta condition or of a supersonic jet. 

4.1.2. Scattering of an  externally incident sound field by ajet  pipe. This problem has 
been attempted by Jacques (1975) using an acoustic analogy. He, however, considered 
only the monopole and dipole terms on the nozzle exit. We shall show that many more 
source terms should be included: dipole sources on the outside wall of the pipe, and 
steady and unsteady quadrupole sources due to both the instability wave and the 
portion of the incident sound field that propagates along the jet. For simplicity we 
confine the analysis to a jet of the same temperature as its surroundings, and no 
external flow. We consider the various source terms in turn. 

The amplitudes of the various sources are derived using the following low-frequency 
asymptotes to the unsteady flows in the jet and pipe. On the outer wall of the duct, 
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the pressure is equal to the ambient pressure p = pie-ikulx for this compact jet 
(ka < 1) .  The jet itself is surrounded by a pressure fluctuation pie-ikulx, the incident 
sound field, so that there is a pressure wave of this magnitude inside the jet. The 
incident pressure wave also sends a wave of amplitude pi  up the pipe, so that the 
pressure in the pipe is piefkz/(l-fil). Clearly, these pressure waves provide an imbalance 
in velocity on either side of the nozzle exit plane. This is balanced by the convected 
instability wave (which has zero pressure fluctuation) and is accordingly described by 

(4.32) 

We now consider each of the source terms. 
The dipole source on the outside wall of the cylinder gives rise to the density field 

(4.33) 

where S is the surface of the jet pipe, If the incident wave is of the form 

p = p i  exp [ikx cos 8, + ikysin e0], 
we can write this dipole field as 

x exp [ - i(cos 8 - cos 0,) kx + i(sin 8, -sin 8 cos q5) ka], (4.34) 

and to  evaluate this integral for ka  + 0 we simply expand the exponentials for small ka. 
Then 

x exp [ik(cos8,-cos0)x] [l +ika(sin0,-sin8cos(q5-q5,))], (4.35) 

and the only axisymmetric term is 

(P-Po)uw = ika sin2 8 exp [~(COS 0, - cos 8)  kz] dx, 

- piiwAJ ~ i n 2 0 e - i ~ ~ / ~ o  - -  
4nRc$( cos 0 - cos 8,) ’ (4.36) 

where we have assumed that k has a small imaginary part to ensure convergence a t  
infinity. This is the most important of the terms neglected by Jacques, and is important 
even for vanishingly small Mach numbers. 

The monopole on the jet-pipe exit plane has strength 

P’ 
PUN = -- ( 1 -  M ) ,  

Cn 
(4.37) 

(4.38) 

(4.39) 
The dipole strength is 

p + (pu2)’ = p’(  1 - M y ,  
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and, therefore, the radiation field from the dipoles on the exit of the duct is 

(4.40) 

We consider next the unsteady quadrupole due to the instability wave; for an in- 
stability wave amplitude ui this is given by 

Here we have 

u . - - -  (1- 
p j c j  1 -  

so that this quadrupole field is 

(4.41) 

(4.42) 

Correspondingly, the sound radiation from the steady quadrupoles excited by the 
instability wave is given by the previous result (5.25), with the new amplitude of the 
instability wave substituted and with p = p j ,  giving 

The unsteady longitudinal quadrupole due to the incident wave existing in the jet 
flow has strength 

Then using the earlier results we see that the sound radiation from 
given by 

(4 .45)  

this source is 

On the other hand, the steady quadrupole due to the wave in the jet has strength 

and the bracketed factor becomes, on substituting for p’  and u, 

iwpi cos2e, - ( I  - M cose,)), 4 p , c j  i-iwcose, 
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Addition of these quantities (4.36), (4.38), (4.40), (4.43), (4.44), (4.46), (4.48) yields 
the radiation field derived exactly in the low-frequency limit ( 9  3). Comparison of this 
result with Jacques’ shows that he has neglected all the quadrupole sources and also 
the dipoles on the duct wall. I n  the low-Mach-number limit our radiation field is 

(4.48) 

of which the first two terms are those used by Jacques, while the last is the duct wall 
dipole. Adding these up gives the low-frequency low-Mach-number scattered field 

(4.49) 

I n  this result, unlike that of Jacques, there is a reciprocal relation between the incident 
and scattered fields. 

4.2. The Dowling, Ffowcs Williams and Goldstein analogy 
Dowling et al. (1978) consider sources of sound (quadrupoles, surface dipoles and mono- 
poles) immersed in a jet flow, and show how the acoustic analogy introduced in $4.1 
must be modified to account for both the propagation of sound through the mean flow 
and for the presence of flow in the acoustic environment of the source. They do this 
by using a non-causal Green function, free from troublesome instabilities. 

Specifically, they show that for sources in a jet flow the far-field sound level is 
given by 

(4.50) 

I n  this equation Gf is what Dowling et al. call the ‘reciprocal Green function’, repre- 
senting an incoming wave (reverse-time) solution and /3 is ( ( 1  -M,)2pj/po)-1, where 
M, is the Mach number in the radiation direction; but they show that pG+ is equal to 
the more usual Green function for a source in the jet flow with outgoing waves. In  
the expressions for the source strengths all the velocities and pressures are measured 
relative to their mean value in the medium in which they are situated. 

We consider only the case of incident plane waves in the pipe. Then a t  the nozzle 
p’ = 0, and ui - v1 = uN = 2p l /pc  while the quadrupole sources vanish since they are 
of second order in fluctuating quantities. 

- p s s ( . f ) v ~ ~ ( P o ~ i + ( u , - v i ) P )  DG+ lids. 

The monopole strength is then given by 

(4.51) 

and the second term vanishes. The axial dipole has strength p’ +pluk(u,-v,). This 
is given by pL:uk, so that the dipole source leads to the field 

DG 
P -Po = / - 07 (Pj % -I- Po( - U,) 1 m 

(4.52) 
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Adding the two sources we note that the U, BG/ayk terms cancel, leaving 

(4.53) 

Now for these low frequencies, it has been shown by Dowling et al. that with no 
external flow 

4 q i  - M cos e)a 
G =  

Substitution of this in (4.53) leads to the far-field density fluctua.tion 

Po & N l a t  
= 4nRc3 1 - M cos e)2* 

(4.54) 

(4.55) 

This result is valid for no external flow. When external flow is present, the only change 
is that the Green function is multiplied by (1  + Mo cos e)-l and the original result is 
quickly recovered. 

In applying this analogy which explicitly incorporates a mean flow we have removed 
the quadrupole sources, which are now included implicitly in the Green function, 
which then accounts for all propagation effects. We have given only this one example 
for the purpose of illustration. The sound fields for the other cases discussed earlier 
could be derived with equal facility using this analogy. In particular, the light-jet 
result follows easily if the appropriate Green function is used. 

5. The effects of nozzle contraction 
In  this section we examine the change in reflection coefficient and sound radiation 

( 0  2) when a contracting nozzle is connected to the pipe. Additionally we determine the 
radiation produced when a slug of fluid of different entropy from the mean flow con- 
vects through the duct. 

The method of analysis we use is to assume that the nozzle is sufficiently short that 
the flow through it is quasi-static with no instantaneous storage of mass or energy in 
the nozzle. We need therefore only consider the conservation of mass flow or energy 
flux across the nozzle. Our method is then identical to that employed by Cumpsty & 
Marble (1977) for turbine disks and by Marble & Candel(l977) for variable-area ducts. 
It is also similar to an analysis of the nozzle problem by Ffowcs Williams (1972). 
That analysis, though, contains an error (see Mani 1981). We further assume that at 
these low frequencies the boundary condition at the end of the nozzle is that the 
pressure fluctuation p' is zero (cf. $2) .  For higher frequencies the theory could still 
be used but some sort of impedance condition at the nozzle exit would have to be used. 

The equation of continuity of mass flow, applied at the two ends of the nozzle, at 
stations 1 and 2, say, is (pUA) , -  (pUA) ,  = 0. Linearizing this in the fluctuations in 
density and velocity gives 

&+u; ,&+%, (5.1) 
P1 UI Pa u2 

an equation exact for low-enough frequencies. At higher frequencies it should be 
augmented by a term 

4 F L M  121 
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representing the instantaneous storage of mass in the nozzle. For a frequency o, 
this term is of order wL/c smaller than the others, where L is a typical nozzle length, 
and may be neglected here. (Of course the argument is only valid for fixed values of 
M ,  and in particular is not expected to be uniformly valid as M + 1. )  Since p i  = 0 
and entropy is conserved, (5.1) may be rewritten 

6) 2 . 

The other equation we use is the energy equation. This states that across the nozzle 
the specific stagnation enthalpy is conserved, so that 

(C,T'+ UU'),  = (CpT'+ U U ' ) ~ ,  (5.3) 

where T' is the temperature fluctuation. Since entropy S is conserved and 

T dS = CpdT - dP/p, 

it follows that, with p ;  = 0 and s; = s;, 

g+ U , u ; + ( T l - T 2 ) s ~  = U2u;. 
P, 

(5.4) 

In  this equation, as with the continuity equation, we have neglected a term of relative 
order wL/c representing the unsteady storage of energy in the nozzle. 

We now assume that upstream of the nozzle there are incident and reflected waves 
pie-~wx~(Zrl+cl) and Rpi eiuzl(cl-ul). Downstream of the nozzle there is a convected neutrally 
stable wave u2e-iwzlUe. We substitute these forms into our mass-flow and energy- 
conservation equations giving respectively 

Solving (5.5) and (5.6), we find that the velocity is 

and the reflection coeficient is 
1 +Nl 1 - Mic;/Mlc; R = - -  
1 -MI 1 + Mgcg/Mlc2,' 

In  these expressions, we can use 

for isentropic flow, y here denoting the adiabatic exponent, while for small Mach 
numbers, M2/M, = A l / A z  (the area ratio of the nozzle), so that then 

(5.10) 



Sound yenerution from unsteady-$ow-jet-pipe interaction 93 

It is clear from this expression that the rejection coeficient i s  zero when M,c2,/Mlcc2, = 1,  
that is, when M, = A , / A ,  for low-enough M,. The result is in agreement with the 
recent experimental results of Bechert (1979). I n  that paper Bechert presents a 
theory for this phenomenon which is similar to ours, except that  i t  does not include 
the effects of compressibility, and is therefore restricted to low Mach numbers. 

A consequence of the above theory is that  since both the radiation field and the 
instability-wave amplitude depend only on the velocity u, a t  the nozzle exit, the 
ratio of their net energy fluxes is unchanged and quite independent of the nozzle 
contraction. It is nevertheless of interest to express the radiated sound in terms of the 
upstream pressure wave p i .  The radiated sound power is 

Substituting for uN = u,, this becomes 

(5.11) 

(5.12) 

where W, is the power flux in the incident wave in the pipe. Therefore the ratio WR/WI 
of the far-field to  the incident power is increased in the ratio c,/c,( 1 + Mic%/M,c:) by 
the contraction. This ratio is less than unity, which shows that there is always less 
power radiated owing to the addition of nozzle contraction, even a t  the condition 
when the reflection coefficient is zero. In that case, all the incident power is, to  first 
order, transferred to the instability wave. 

We consider next the transmission of sound out of a choked nozzle. Instead of 
assuming as the boundary condition that there is an instability wave downstream 
with zero pressure, we use a condition of constant non-dimensional mass flow through 
the choked nozzle. This condition is the same as that introduced by Cumpsty & 
Marble for a choked turbine. The choked nozzle condition is that 

m T ~ , / A p , ,  = constant, 

where m is the mass flow, A the area, and To, and p, ,  the stagnation temperature and 
pressure. In  this case the energy equation cannot be used to determine the unst,eady 
flows, since the choked flow is not isentropic. 

Cumpsty & Marble linearize the constant-mass-flow condition to obtain an extra 
equation relating the pressure, temperature and velocity a t  the entrance to  the nozzle. 
In  our case there is no need to do this. We note that, since both the choked and sub- 
sonic values of the reflection coefficient must be the same when M, = I ,  we can obtain 
the choked-flow reflection coefficient for arbitrary upstream Mach number Ml by 
simply setting M, = 1 in (5.8). Then with ci/c: = ( 1  + #(y -  1 )  M : ) / a ( y +  l ) ,  the re- 
flection coefficient is 

(5.13) 

(5.14) 

For subsonic Ml (which is always the case) this reflection coefficient is always positive 
and less. than unity. This may be compared with the negative value obt,ained for a 

4 - 2  
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non-contracting nozzle. If the full analysis with the constant-mass-flow relation is 
used, the same result is obtained. 

Another interesting result that can be obtained from the above theory is the re- 
flection coefficient of a duct inlet. This result, is obtained by reversing the sign of the 
Mach numbers in the formula (setting Ml = -ill2, M2 = - Jl l )  and putting A2/A, = 0, 
for a 'bellmouth' inlet. Then we find that the magnitude of the reflection coefficiellt 
is equal to (1 - M ) / (  1 + M ) .  This is in good agreement with the experimental value of 
Ingard & Singhal (1975), who obtain a value of [(l -M)/(l  + N ) ] 1 . 3 3 .  Further, it 
corresponds to total reflection of the sound energy incident on the end of the tube. 

Finally, consider an entropy wave incident on the nozzle from upstream. The 
detailed analysis, which proceeds in a manner similar to that for the reflection coefi- 
eient, may be found in Cargill (1981). The upshot is a radiation field that, retaining 
terms O ( M ) ,  is given by (with p2 = po, c2 = co) 

(5.15) 

which is in precise agreement with the results derived by more sophisticated means by 
Ffowcs Williams & Howe (1 975). Their analysis assumes that a sharp-fronted slug of 
gas of density different from that of the mean flow is convected through the nozzle, 
and determines the far-field sound by a rather more elegant application of the 
acoustic analogy. 

1 ApAPA, 
A2P02 [ 1+2McosO 

p i =  4nR at &1A2(1 +HAi/A2) ' 

6. Discussion and comparison with experimental results 
The purpose of this section is to discuss the overall features of the results obtained 

in $5 2-5 and to compare them with such experimental results as are available. 
There are a number of comparisons with published data that can be made for 

incident internal noise. Figure 5 compares our low-frequency field shapes (2.45) 
with the exact calculations of Munt (1977) for the same problem, for cold jet conditions 
(C = 1); the two agree beyond GO" to the jet axis. Near the jet axis there is a dis- 
crepancy which increases with frequency and Mach number. This might hare been 
expected since our predicted power levels increase very rapidly as N nears unity, and 
would be expected to  exceed the exact values. We note that, in the theory, as the jet 
nears sonic velocity one of the branch points tends to infinity and then the approxi- 
mate factorizations which we have used are not uniformly valid as ill -+ 1.  That 
would accord with expectations that the reflection coefficient should actually decrease 
near M = 1 , so that at ill= 1 it changes gradually to  its zero value for a supersonic jet. 
Therefore our solution is expected to be invalid for Mach numbers close to one. In 
Munt's (1977) paper theory is compared with the experimental results of Pinker & 
Bryce (1976) for both hot and cold jets. In  the latter case the agreement is good, as 
i t  is for our theory for low-enough Mach numbers. For the hot jet Rlunt's results are 
much lower than the experimental points close to the jet axis, and show a dip consistent 
with refraction of sound by the jet. A possible reason for this disagreenleilt is the in- 
complete modelling of the jet instability waves. In  the model probletn these grow 
exponentially as along the jet and have no conventional acoustic far field. In reality, 
however. the growth is liniit,ed by the spreading of the nlciln flou- dou-nstrenni of the 
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FIQURE 5. Comparison of low-frequency field shapes with Munt's calculations; 01 = 0, 
C = 1.0. -, ku + 0; --, ka = 0-24 (Munt 1977); ---, ka = 0.6 (Munt 1977). 

nozzle and by nonlinear effects. Further, in Munt's theory the region of the discre- 
pancy is the one where the direct field of the instability is present, and limiting the 
growth of this instability would probably result in an extra far field, dependent on 
the growth and decay rates of the instability wave, but confined essentially to the 
angular region in which the direct field of the original instability wave was present. 
In our theory, there is no such far field outside the jet associated with the instability 
waves, since this angular sector is vanishingly small for these low-frequency waves 
which grow at negligible rate. 

The reflection coefficient we have determined is in agreement with both the limited 
experimental data of Schlinker (1977) and Munt's (19824 computations. However, it 
would appear to be valid over only a limited frequency range. At non-zero frequency 
it is found that for non-zero Mach numbers the reflection coefficient initially rises, to 
give a peak at a nearly constant Strouhal number, and then decreases as more sound 
is radiated, in accordance with the established theory without flow (Levine & Schwinger 
1948). We note though that this behaviour does not violate conservation of energy, 
since IRJ is always less than (l+M)/(l-M). In another paper (Cargill 1982) we 
carry out the low-frequency calculation initiated here to higher order in ka, with 
results that adequately reproduce the entire behaviour observed experimentally and 
computed by Munt. 

In  our theory the effect of external flow on intensity has been shown to vary nearly 
as (1 +M,cosO)-~ near 8 = 90". This is in excellent agreement with the results of 
Pinker & Bryce (1976), which covered higher frequencies. The highly directional 
field-shape we obtain is, further, characteristic of sources immersed in jet flows at 
low frequency (Goldstein 1976; Mani 1974). 
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FIGURE 6. Comparison of the ratio of radiated power to net power in a duct with measurements 
and Munt’s theory; M = 0.3, a = 0,  C = 1.0. -- , exact theory (Munt 1982b), -, low- 

frequency theory; - - -, approximate theory (Howe 1979); 0, measurements (Bechert et al. 
1977). 
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FIGURE 7. Comparison of the ratio of radiated power to net power in a duct with measurements 
and Munt’s theory; M = 0.5, a = 0 ,  C = 1.0. -- , exact theory (Munt 1982b); -, low- 

frequency theory; - a -, approxilnat,e theory (Howo 1979); 0, measurerncnts (Bechert et al. 
1977). 
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FIGURE 8. Comparison of the ratio of radiated power to net power in a duct with measurements 

frequency theory ; -. - ,approximate theory (Howe 1979) ; 0,measurementv (Bechertetal. 1977). 
and Munt’s theory; M = 0.7, a = 0, C = 1.0. - -, exact theory (Munt 1982b); - , low- 

Of great interest is the comparison between the net power in the pipe and the power 
radiated to the far field. Figures 6-8 compare our results with Munt’s exact theory 
(19823). Howe’s low-Mach-number theory (1979) and the experiments of Bechert et al. 
( 1  977). For the lowest frequencies all four are in good agreement. As might be expected, 
our theory diverges from the experiments and Munt’s theory for higher frequencies, 
and agreement is only obtained over reduced frequency ranges as the Mach number is 
increased, which is consistent with overprediction of the far-field sound levels. We 
have further shown that the conversion from acoustic to hydrodynamic energy 
implicit in these relations is critically dependent on the existence of a Kutta condition 
at the pipe exit. When the Kutta condition is relaxed, and no jet instability wave is 
produced, we find that there is no such energy conversion, in agreement with Howe 
(1979). Further, we find that then all the incident energy is reflected up the duct and 
the reflection coefficient is - (1 +M)/( l  - M ) .  We have also shown, again in agree- 
ment with Howe, that, if the instability wave is replaced by some sort of neutral wave 
convected at a speed vMq, then the radiation changes with v from the Kutta-condition 
value (v = 1) to the non-Kutta-condition value (v = 0). 

An alternative way of looking at the power transmission ratio is as a function of 
Mach number. In  figure 9 we compare our results with those of Moore (1977). We find 
that at  Mach numbers between 0.2 and 0-8 agreement is good, despite the relatively 
high ka value (0.46) of Moore’s experiments. At low Mach numbers our result fails 
because the Strouhal number of his experiment is no longer low, while at high Mach 
numbers we probably overestimate the far-field radiation. 

A further corollary to this energy-loss mechanism concerns the resonances in a 
tube with flow. We have shown that energy is lost from such a tube, and this loss would 
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FIGURB 9. Comparison of the ratio of radiated power to net power in a duct with measurements 
by Moore (1977); a = 0, C = 1.0, ka = 0.46. -, low-frequency theory; 0, measurements. 
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FIQURE 10. Effect of flow on duct resonances (after Ingard & Singhal 1975). 

result in the elimination of any resonant peaks. This has been demonstrated by Ingard 
& Singhal(l975). Their results, as reproduced in figure 10, do indeed show a significant 
reduction in the relative amplitude of the resonant peaks of the frequency response 
when a mean flow is present. 

When the jet is 'hotter than it is compact' we find that a quite different set of 
phctiomena occurs. Then, all the sound escapes from the pipe (the reflection coefficient 
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is zero) and is channelled along the jet, which in this limit behaves as a rigid walled 
tube. There is no jet instability wave. Further, the pressure in the far field is reduced 
relative to its normal (p,/pj N O(1)) value by a factor - [ (po/pj)  (ka)21n ( h ) I - l .  This 
factor is by definition large in the light-jet condition. We find, though, that for a jet 
composed of a perfect gas, the condition always fails around the 90” position in the 
far field, where there is a peak in the field shape cokesponding to the Mach angle for 
disturbances transmitted along this very hot jet. These results are entirely consistent 
with those established by Dowling et d. (1978) for jet noise. Interesting though this 
result is, it appears to have little relevance in an aeronautical context, as the tem- 
peratures required to achieve the light-jet condition are far too high ( -  10000 K). 

Examination of our results for a supersonic jet shows phenomena similar to those 
for the subsonic jet. Again there is a conversion from acoustic to hydrodynamic 
energy. But, compared with the subsonic jet, the reflection coefficient is now zero, 
since sound cannot propagate upstream against the flow, and there is an additional 
motion of the jet which corresponds to the steady wave structure of an imperfectly 
expanded supersonic jet. The energy in the pipe splits itself between the instability 
wave and these quasi-periodic waves. The field shape of the radiated sound is also 
somewhat changed as compared with the subsonic case. 

Our result for the scattering of an externally incident sound wave by the pipe may 
be compared with the theory of Jacques. He deduces the radiated sound from an 
application of the acoustic analogy. We show this to be incorrect, firstly because he 
neglects the sources on the wall of the pipe, and secondly because he neglects the 
quadrupole sources in the jet. Our results do, however, agree with his for the ‘zeroth- 
order’ fields in the pipe and jet column. An interesting feature of the field shape of the 
radiated sound is the appearance of a zero at the cone-of-silence angle for waves 
propagating out of the jet and into the ambient fluid. 

A further problem that can be handled using the methods of this paper is the 
generation of sound when turbulence is convected past the end of the jet pipe. This is 
described in detail in Cargill (1981), and we will only summarize the results here. 
The turbulence is modelled by convected ring vortices which may be situated inside 
or outside the pipe. This sound is shown to scale as p 2  cc p2U4M2E2/R2, which is in 
agreement with other theories, for example that of Leppington (1971), who modelled 
turbulence by point quadrupoles. The sound source due to convection of vortices 
past the end of the pipe only exists when there is an external flow over the jet, and 
could be one of the ‘installation effects’ of Bryce (1979) which raise the noise level of 
an aircraft in flight above the level predicted for pure jet noise. An important feature 
of our result is that, when a Kutta condition is enforced, no sound is radiated when 
the vortices are convected at  the speed of the mean flow. This is similar to a result 
obtained by Howe (1976) for the convection of line vortices past a flat plate. In our 
model it arises because the sound field is essentially driven by the pressure that would 
exist on the wall of the duct if it were infinite, and in our linear approximation this is 
proportional to the convection speed of the vortices relative to the mean flow. When 
no Kutta conditions are enforced, the response of the sound field to this pressure is 
increased and the dependence on the velocity of slip removed. 

In  Cargill (1981) we have re-examined Crighton’s (1972) theory for the scattering 
of an instability wave by the pipe. We find a result that agrees with his in the zero- 
Mach-number limit, but differs somewhat otherwise, where the field shape is altered 
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owing to the internal and external flows. Then the effect of flight is more complicated 
than the four powers of Doppler factor assumed by Crighton. 

In  all these problems which we have solved by the Wiener-Hopf method in the low- 
frequency limit, we have implicitly assumed that both Strouhal number ka/M and 
Helmholtz number are small. This limits the usefulness of the solutions. In  an aero- 
nautical context, Strouhal numbers of order one are important. Examination of all 
our formulae shows, however, that as the frequency is changed the field shapes are 
all changed by the same factor ( -  l /K+(u)) .  To obtain the behaviour at these higher 
frequencies all we have to do, therefore, is use Munt’s results for the internal noise a t  
higher frequency, and scale the other results appropriately. Subject to the comments 
we have already made about Munt’s results compared with ours, our results for these 
other mechanisms may be directly read across to higher frequencies, 

We have used Lighthill’s acoustic analogy to deduce a set of equivalent sources for 
these sound fields, and we find that there are usually four types of source: dipoles and 
monopoles on the duct exit and side walls, and two types of quadrupole in the jet 
flow. The quadrupoles involve the unsteady part of the Lighthill stress tensor acting 
over a fixed volume, and the steady part of the stress tensor acting over the variable 
volume of the jet, the latter reducing to a surface source on the outer surface of the 
jet. At higher Mach numbers and for high density ratios, the sound from the steady 
quadrupole dominates the far field and is responsible for the high convective amplifi- 
cation on the field shape of internal noise radiation. It is also responsible for the sound 
field being proportional not to the jet density as one might expect, but to the far- 
field density (for a given velocity fluctuation at  the nozzle exit). We have also shown, 
in consequence, that in problems such as these the instability wave is an essential 
feature of the unsteady motion of the jet, In the low-frequency limit, the instability wave 
degenerates to a neutral convected vorticity pattern on the jet boundary. 

We have also used another analogy, due to Dowling et al. (1978), which incorporates 
explicitly the effects of fluid shielding by the mean flow. Then the only sources are 
those dipoles and monopoles on the duct exit alone, while the quadrupole sources are 
negligible, being now of second order in fluctuating quantities. Thus the field shape 
and density dependence appear as an artifact of the particular Green function used 
and not of the quadrupole sources. 

We have produced a simple theory for the effects on these sound radiation problems 
of the contraction of the nozzle. In  the low-frequency limit we find that this contraction 
has no effect on the transfer of power from acoustic to hydrodynamic energy, but does 
have a large effect on the reflection coefficient. Indeed, as the Mach number increaaes 
from zero, the reflection coefficient decreases instead of remaining constant, reaching 
zero when the Mach number is equal to the area ratio of the nozzle. This behaviour is 
found in recent experimental results of Bechert (1979), and figure 11 compares our 
result with his. The position of the minimum in the reflection coefficient is well 
predicted. For a choked supersonic nozzle we find the reflection coeEcient is always 
positive, and less than unity. 

We have also used this theory to study the sound produced where ‘hot spots’ or 
entropy waves are convected out of the nozzle. Our results are in excellent agreement, 
for low Mach number, with those of Ffowcs Williams & Howe (1975), and show the 
sound field to depend on the temperature drop across the nozzle. 
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FIGURE 1 1 .  Sound-power reflection coefficient : comparison with Bechert ( 1979). 
__ , low-frequency theory ; 0, Bechert. 
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Appendix A. Properties of the Wiener-Hopf kernel: subsonic flow 

Wiener-Hopf equation (2.20) : 
The purpose of this appendix is to set out the properties of the kernel K(u)  of the 

* (A11 
[D! J,( kva) kwHg)’(kwa) - yDt Hg’kwa) kvJL( kva)] 

K(u)  = pjCjk2 
kvkwJm( kva) Hg)’(kwa) 

We consider first the axisymmetric case, rn = 0. Then as ka -+ 0 the denominator 

(A 2) 
i kvkwJk(kva) H$)(kwa) N - k2v2. 
7T 

This has the factorization (ik2/n) v+v-, where 

The quantity 
v+ = ( l - M u ) - u ,  v- = ( l - M u ) + u .  (A 3a, b )  

D;J,(kva) kwHg)‘(kwa) - yDtHg)(kwa) vkJh(kva) = Q (say) 

is, t o  second order in ka, 

[In ikwu + yE - frni - 41 , (A 4) 1 1 Df(kwa)2- yD;(kva)2 
Df 

where Euler’s constant yE = 0.57721 ... . The zeros of this expression depend on 
the ranges of the parameters involved. We distinguish between the two cases, that in 
which y is O(1) as ka -+ 0, and the light-jet case of Dowling et al. (1978), where 
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y 9 1/(ka)21n ka as ka + 0.' For the former case the zeros are near u = l /M, at 
u = uo, u$ = (1/M) (1 f ir), where 

r = (4y)t Do kva[ln iwku + yE - 8 - $ 7 4 ,  (A 5 )  
which is to be evaluated with u = l/M. It is then clear that Q may be factorized as 
Q+Q-, where, for k E A (figure 2), 

2iM2 Q+=y (U-U, )<U-U~*) ,  Q - =  1, 

with 

uo, uo * = . - M -  1 + iy#(l-cr) 4 2 M 2  ~ n ( & ( l - C 2 ( l - a ) 2 M 2 ) ~  

This expression differs from Munt's, because we have included terms of O(k2a2) and 
not just O((ka)2ln ka) to obtain the correct normalization for the In ka term. 

When y is sufficiently large it is clear that u is no longer small, and this approxima- 
tion breaks down. This is the light-jet limit. There, the second term in Q dominates. 
In Q ,  we have y = C2 for a perfect gas, and therefore 

Df(kWa)' -yDi(kva)' = - (~uu) '  (I)! -yo:), (A 8) 
2i 
na 

Q = - (Of+ +k2a2u2(Df - yo;) (In 4ku.a + yE - i i m  - 4) + O(k3a3). (A 9) 

Then the zeros of Q are near u = 0, at 2 ie, say, where e satisfies Q( _+ i e )  = 0, or 

1 + k2a2e2y[ln BkaC + yE - Sni - fr] = 0, (A 10) 

so that to  a first approximation 

E = J2/y~ka)ln ikaCI4. 
Then the factorization is 

2i 
nm2 

Q+ = - ( u + ~ E ) ,  Q - =  ( u - i i ~ ) .  

We now consider the case of other azimuthal modes, at low frequency. In the limit 
of small ka, u finite, the mth azimuthal kernel function K,(u) may be expanded for 
small ka t o  give 

[ (kva) ( tkva) ,k  (~)m+l+yD~-(fkvu)m-l$kva~(-&-)m] m 
2n kwa m! 

kva kwa (&) 5 a (ikva)m-l 

p,c!k2a2 Df - 
m !  

Km(u) - m 

The zeros of this factor are both in R-, so that we obtain the result 

Kk = pjcf(ka)2 ( D f s  yo;), 

K ,  = 1. 

This factor Df + yDt will be recognized as the dispersion relation describing the 
instabilities of a plane two-dimensional vortex sheet in compressible flow. The zeros 



Sound generation from unsteady-,flow-jet-pipe interaction 103 

i.e. at 
1 l + i y  

uo,u* - -- 
O -ikfl*iay’ 

where the upper and lower signs refer to the stable and unstable modes of the jet. 
The factor D! + yDt may then be written as 

Di+yDi  = M2(I+av2) (u -u~) (u -u~~*) .  (A 17) 

Appendix B. Properties of the Wiener-Hopf kernel: supersonic flow 

sonic conditions. As before, K(u)  is given by 
This appendix examines the properties of the Wiener-Hopf kernel K(u)  for super- 

For convenience we consider only the rn = 0 mode and ignore the light-jet condition. 
In  the subsonic case, the only poles of the numerator of (B 1) that were important 

at  low frequencies were those representing instability waves. The other poles, near 
the zeros of J,(kva), represented waves in the jet decaying as exp [ -jmn/u( 1 - ikf2)4], 
where Jm(jmn) =0, and were unimportant. For supersonic jet speeds, these poles 
produce non-decaying waves, which are the analogue of the wave structure of an 
imperfectly expanded jet in steady flow. We divide the range of u into two regimes for 
the factorization of K(u) .  First, where u 4 l/ka these poles are of no consequence, 
and we can again approximate K(u)  as 

- 2p, c: k2D? 
(kv)2u . K(u) = 

For supersonic flow this is a plus function. This is because K(u)  depends only on the 
jet, not ambient, conditions, and because no waves can propagate against the flow. 
Therefore we can take K-(u) = 1 and K+(u) = K(u) .  

l/ku the poles of the numerator of (B 1) become significant. We 
only deal with the case of no external flow, where a = 0. Then, we can approximate 
K(ul as 

For values of u 

. ,  
2pj C: k2Df Jm( kva) 

K(u)  = 
kvJk(kva) ’ 

Again we can take K-(u) = 1 and K+(u) = K(u) .  

K-(u) is no longer unity. 
If there is an external flow present, we have to consider the full numerator, and 
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